Ульяновский государственный технический университет

К.С.ГОРШКОВ

СТРУКТУРНЫЙ СИНТЕЗ И СИМВОЛЬНЫЙ ДОПУСКОВЫЙ АНАЛИЗ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ МЕТОДОМ СХЕМНЫХ ОПРЕДЕЛИТЕЛЕЙ

ПЛАКАТЫ К ДОКЛАДУ по кандидатской диссертации копии

Ульяновск 2010

СПИСОК ОСНОВНЫХ СОКРАЩЕНИЙ И ОБОЗНАЧЕНИЙ

ИНУН	Источник напряжения, управляемый напряжением
ИНУТ	Источник напряжения, управляемый током
ИТУН	Источник тока, управляемый напряжением
ИТУТ	Источник тока, управляемый током
ЛЭЦ	Линейная электрическая цепь
MCO	Метод схемных определителей
нуллатор	Направленный нумерованный взвешенный нуллатор
нуллор	Направленный нумерованный взвешенный нуллор
норатор	Направленный нумерованный взвешенный норатор
ПСФ	Полиномиальная схемная функция
ПУР	Показатель участия ребра
САФ	Схемно-алгебраическая формула
ССФ	Символьная схемная функция
УИ	Управляемый источник
ЭДС	Электродвижущая сила
$\bigcup_{O}^{O} U \qquad \bigvee_{O}^{O} KU$	Источник напряжения, управляемый напряжением (ИНУН)
$\bigvee_{O} \underline{I} \bigvee_{O} HI$	Источник напряжения, управляемый током (ИНУТ)
$\bigcup_{O}^{O} U \bigoplus_{O}^{O} GU$	Источник тока, управляемый напряжением (ИТУН)
$ \begin{array}{c} \bullet \\ \bullet \\$	Источник тока, управляемый током (ИТУТ)
	Операционный усилитель (ОУ)
+	Транскондуктивный усилитель

НАИМЕНОВАНИЕ ПЛАКАТОВ

	c.
1. Основы теории схемных определителей	4
2. Положения, выносимые на защиту	5
3. Алгоритм восстановления схем по их ССФ	6
4. Пример восстановления схемы на основе заданной ССФ	7
5. Исключение изоморфных структур в процессе структурного синтеза	8
6. Алгоритм структурного синтеза схем по их ПСФ	9
7. Критерии выбора оптимальных схемных решений	10
8. Структурный синтез LC-цепи формы Каура на основе ПСФ	11
9. Структурный синтез LC-цепи формы Фостера на основе ПСФ	12
10. Структурный синтез ARC-фильтра	13
11. Параметрический синтез ARC-фильтра	14
12. Программы структурного синтеза SymSyn и InterSyn	15
13. Схемное решение системы уравнений	16
14. Транскондуктивная реализация структурных схем электрических	17
цепей	
15. Программа транскондуктивной реализации SchemeConverter	18
16. Схемный подход к допусковому анализу	19
17. Схемно-алгебраические формулы для нахождения допусков	20
18. Схемно-алгебраические формулы для определения погрешности	21
19. Допусковый анализ транзисторного усилителя	22
20. Компьютерная программа допускового анализа Toleralize	23
21. Основные результаты диссертационной работы	24

ОСНОВЫ ТЕОРИИ СХЕМНЫХ ОПРЕДЕЛИТЕЛЕЙ

ФОРМУЛЫ ВЫДЕЛЕНИЯ СОПРОТИВЛЕНИЯ И ПРОВОДИМОСТИ [*B.Фойснер.*–1902, 1904]

 $\Delta = z\Delta^z + \Delta_z$

 $\Delta = y\Delta_v + \Delta^v$

ФОРМУЛА ВЫДЕЛЕНИЯ ПАРАМЕТРОВ ЛИНЕЙНЫХ ЭЛЕМЕНТОВ

[В.В.Филаретов.-1998, 2001]

 $\Delta = \chi \Delta (\chi \Rightarrow$ нуллор) + $\Delta (\chi = 0)$,

 $\chi \in \{R, g, K, G, H, B\}.$

ИДЕАЛЬНЫЙ УСИЛИТЕЛЬ ТЕЛЛЕГЕНА ИЛИ НЕНАПРАВЛЕННЫЙ НУЛЛОР (1954)

норатор

нуллатор

идеальный ОУ (нуллор)

НАПРАВЛЕННЫЙ НУЛЛОР

нумерованный

[В.В.Филаретов.-1996]

ФОРМУЛЫ ДЛЯ ВХОДНЫХ И ПЕРЕДАТОЧНЫХ ФУНКЦИЙ

[Я.Браун.-1966]

ПОЛОЖЕНИЯ, ВЫНОСИМЫЕ НА ЗАЩИТУ

1. Методика восстановления линейных электрических цепей по символьной схемной функции (ССФ), основанная на формулах В. Фойснера для выделения двухполюсных элементов и их обобщениях.

2. Методика структурного синтеза линейных электрических цепей по полиномиальной схемной функции (ПСФ), не имеющая ограничений на тип используемых элементов, обеспечивающая получение полного класса схем, удовлетворяющих заданной функции, исключение изоморфных структур и выбор оптимальных схемных решений.

3. Методика реализации структурных схем электрических цепей на основе новой элементной базы – транскондуктивных усилителей, – не требующий применения условий настройки (согласования параметров).

4. Методика определения влияния допусков элементов на коэффициент преобразования электрической цепи.

АЛГОРИТМ ВОССТАНОВЛЕНИЯ СХЕМ ПО ИХ ССФ

ТРЕБУЕТСЯ ВОССТАНОВИТЬ ССФ:

 $S=N_n/D_n$, где n – число элементов : $\chi_1, \chi_2, ..., \chi_m, \chi_n$.

1. ПОВТОРНАЯ ЧАСТИЧНАЯ СВЕРТКА ХАРАКТЕРИСТИЧЕСКОГО УРАВНЕНИЯ ССФ

3. НАРАЩИВАНИЕ ПРОСТЕЙШЕЙ СХЕМЫ ДО МНОЖЕСТВА СХЕМНЫХ ВЫРАЖЕНИЙ *cir*(*D*_n)

4. ПОДКЛЮЧЕНИЕ НЕЗАВИСИМОГО ИСТОЧНИКА И ВЕТВИ ИСКОМОГО ОТКЛИКА К СХЕМАМ МНОЖЕСТВА *cir(D_n)* ДЛЯ ПОЛУЧЕНИЯ МНОЖЕСТВА СХЕМ *cir(S)*, СООТВЕТСТВУЮЩИХ ЗАДАННОЙ ССФ

5. ИСКЛЮЧЕНИЕ ИЗ МНОЖЕСТВА *cir(S)* ИЗОМОРФНЫХ СХЕМНЫХ РЕШЕНИЙ

ПРИМЕР ВОССТАНОВЛЕНИЯ СХЕМЫ НА ОСНОВЕ ЗАДАННОЙ ССФ

ЗАДАНА ССФ *N/D=U/E* ОПЕРАЦИОННОГО ПРЕОБРАЗОВАТЕЛЯ

 $N_8 = pC_1pL_1BIR_2r_1KU + pC_1pL_1BIR_2r_1 + pC_1pL_1R_1r_1 - pC_1pL_1K_1R_1R_2$

 $D_{8} = -BIr_{1}r_{2} - BIr_{1}pL_{1} + KUr_{1}R_{2}R_{1}pC_{1} + KUr_{1}R_{2} + pC_{1}R_{1}R_{2}r_{1} + pC_{1}R_{1}R_{2}r_{2} + pC_{1}R_{1}R_{2}pL_{1} + pC_{1}R_{1}r_{2} + pC_{1}R_{1}r_{1}pL_{1} + R_{1}r_{2} + R_{1}pL_{1} + R_{2}r_{1} + R_{2}r_{2} + R_{2}pL_{1} + r_{1}r_{2} + r_{1}pL_{1}.$

Выделяем из D_8 параметр KU: $D_7 = -BIr_1r_2 - BIr_1pL_1 + pC_1R_1R_2r_1 + pC_1R_1R_2r_2 + pC_1R_1R_2pL_1 + pC_1R_1r_1r_2 + pC_1R_1r_1pL_1 + R_1r_2 + R_1pL_1 + R_2r_1 + R_2r_2 + R_2pL_1 + r_1r_2 + r_1pL_1.$

 $D_{7}(BI=0): D_{6}=pC_{1}R_{1}R_{2}r_{1}+pC_{1}R_{1}R_{2}r_{2}+pC_{1}R_{1}R_{2}pL_{1}+pC_{1}R_{1}r_{2}+pC_{1}R_{1}r_{1}pL_{1}+R_{1}r_{1}+R_{1}r_{2}+R_{1}pL_{1}+R_{2}r_{1}+R_{2}r_{2}+R_{2}pL_{1}+r_{1}r_{2}+r_{1}pL_{1}.$

- **D_6(pC_1=0):** $D_5=R_1r_1+R_1r_2+R_1pL_1+R_2r_1+R_2r_2+R_2pL_1+r_1r_2+r_1pL_1.$
- $D_5(R_1=0):$ $D_4=R_2r_1+R_2r_2+R_2pL_1+r_1r_2+r_1pL_1.$
- $D_4(pL_1=0):$ $D_3=R_2r_1+R_2r_2+r_1r_2.$
- $D_3(r_2 \rightarrow \infty): \qquad \qquad D_2 = R_2 + r_1.$
- $D_2(r_1=0):$

 $D_1 = R_2.$

ПРОВОДИМ НАРАЩИВАНИЕ ПРОСТЕЙШЕЙ СХЕМЫ cir(D₁)

ИСКЛЮЧЕНИЕ ИЗОМОРФНЫХ СТРУКТУР В ПРОЦЕССЕ СТРУКТУРНОГО СИНТЕЗА

РАСПРЕДЕЛЕНИЕ ПОКАЗАТЕЛЕЙ УЧАСТИЯ РЕБЕР (ПУР) ГРАФА G

 $G = \{T_i, i \in I\},$ где $I = \{1, 2, ..., n\}.$

КРИТЕРИИ РЕБЕРНОГО И ВЕРШИННОГО ИЗОМОРФИЗМА

P=P'

B=B'

ИССЛЕДОВАНИЕ ГРАФОВ G, G' и G'' НА ИЗОМОРФИЗМ

ТАБЛИЦЫ РАСПРЕДЕЛЕНИЯ ПОКАЗАТЕЛЕЙ УЧАСТИЯ РЕБЕР И ПОКАЗАТЕЛЕЙ УЧАСТИЯ ВЕРШИН ГРАФОВ *G*, *G*' И *G*''

Бинарі			
графов			ПУР
G	G'	$G^{\prime\prime}$	
9 - 10	7 - 10	7 – 10	615
8 - 10	10 - 8	10 - 8	615
3 - 10	6 - 9	3 – 9	840
9 - 8	7 - 8	7 - 8	540
9 - 7	9 - 7	6 – 7	615
8 - 7	9 - 8	6 – 8	615
7 - 6	3 - 10	9 - 10	840
6 - 4	6 - 4	6 – 4	624
6 - 5	6 - 5	6 – 5	624
5 - 4	5 - 4	5-4	576
1 - 4	1 - 4	1-4	696
2 - 5	2 - 5	2 - 5	696
1 - 3	1 - 3	1 – 3	624
1 - 2	1 - 2	1-2	576
3 - 2	3 - 2	3 - 2	624

	Показатели	Показатели	Показатели
Номер	участия	участия	участия
вершины	вершин	вершин	вершин
	графа G	графа <i>G</i> ′	графа G''
1	576, 624, 696	576, 624, 696	576, 624, 696
2	576, 624, 696	576, 624, 696	576, 624, 696
3	624, 624, 840	624, 624, 840	624, 624, 840
4	576, 624, 696	576, 624, 696	576, 624, 696
5	576, 624, 696	576, 624, 696	576, 624, 696
6	624, 624, 840	624, 624, 840	615, 615, 624, 624
7	615, 615, 840	540, 615, 615	540, 615, 615
8	540, 615, 615	540, 615, 615	540, 615, 615
9	540, 615, 615	615, 615, 840	840, 840
10	615, 615, 840	615, 615, 840	615, 615, 840

$$P=P'=P''$$

 $B=B'\neq B''$

АЛГОРИТМ СТРУКТУРНОГО СИНТЕЗА СХЕМ ПО ИХ ПСФ

4. ПОДКЛЮЧЕНИЕ НЕЗАВИСИМОГО ИСТОЧНИКА И ВЕТВИ ИСКОМОГО ОТКЛИКА К СХЕМАМ МНОЖЕСТВА *cir(D_n)* ДЛЯ ПОЛУЧЕНИЯ МНОЖЕСТВА СХЕМ *cir(S*), СООТВЕТСТВУЮЩИХ ЗАДАННОЙ ФУНКЦИИ

5. ИСКЛЮЧЕНИЕ ИЗ МНОЖЕСТВА *cir(S)* ИЗОМОРФНЫХ СТРУКТУР И ВЫБОР ОПТИМАЛЬНЫХ СХЕМНЫХ РЕШЕНИЙ

КРИТЕРИИ ВЫБОРА ОПТИМАЛЬНЫХ СХЕМНЫХ РЕШЕНИЙ

СТРУКТУРНЫЕ КРИТЕРИИ ИСКЛЮЧЕНИЯ НЕТЕХНОЛОГИЧНЫХ СХЕМНЫХ РЕШЕНИЙ

1. Бисекция по одному узлу

2. Некорректное включение активных элементов (активный элемент нейтрализуется)

3. Отсутствие у активного элемента общей точки с внешним источником

выбор оптимального схемного решения

1) параметрический синтез на основе метода компонентных уравнений [А.А. Ланнэ, Е.Д. Михайлова.–1982] для определения численных значений параметров элементов полученных схем;

2) анализ частотных характеристик, построение амплитудно-частотных и фазо-частотных характеристик;

3) допусковый анализ для определения схем, обладающих наименьшей чувствительностью.

СТРУКТУРНЫЙ СИНТЕЗ LC-ЦЕПИ ФОРМЫ КАУЭРА НА ОСНОВЕ ПСФ

РЕАЛИЗОВАТЬ СХЕМУ *LC*–ДВУХПОЛЮСНИКА

$$Z(p) = \frac{45p^4 + 27p^2 + 1}{60p^3 + 5p}$$

кол-во LC→min.

Раскладываем знаменатель заданной функции на подвыражения:

$$D_0=0$$
, $D_1=D_2=b_1p$, $D_3=D_4=b_3p^3+D_2$.

Выбираем начальную схему в соответствии с условием $b_0=0, b_1 \neq 0, u$ наращиваем ее до получения множества схем cir(D_n):

$$\Delta = D_1 = pC_1$$

подключаем L₁

$$\begin{array}{c} \begin{array}{c} \\ C_1 \end{array} \\ L_1 \end{array} \\ \Delta = D_2 = pC_1 \end{array}$$

подключаем С2

$$\Delta = D_{3a} = pC_1(pC_2pL_1+1) \qquad \Delta = D_{3b} = pC_1(pC_2pL_1+1) + pC_2$$

подключаем L_2 , получаем множество схем соответствующих cir (D_n) :

Согласно четвертому шагу алгоритма получаем множество схем cir(S):

Схема Za исключается из множества схем cir(S) согласно критерию бисекции по одному узлу.

Схемы Zb и Zc являются соответственно первой и второй формами Кауэра.

СТРУКТУРНЫЙ СИНТЕЗ LC-ЦЕПИ ФОРМЫ ФОСТЕРА НА ОСНОВЕ ПСФ

РЕАЛИЗОВАТЬ СХЕМУ *LC*–ДВУХПОЛЮСНИКА

$$Z(p) = \frac{10^6 \cdot p^3 + 1.5 \cdot 10^{14} p}{p^4 + 2 \cdot 10^8 p^2 + 0.51 \cdot 10^6},$$

кол-во LC→min.

Раскладываем знаменатель заданной функции на подвыражения:

$$D_0=0$$
, $D_1=D_2=1$, $D_3=b_2p^2+D_1$, $D_4=b_4p^4+D_3$.

Выбираем начальную схему в соответствии с условием $b_0 \neq 0, b_1 = 0, u$ наращиваем ее до получения множества схем $cir(D_n)$:

$$\sum_{i=1}^{n} L_{1}$$

подключаем С1

подключаем L₁

$$C_{1} = D_{2} = 1$$

$$\Delta = D_{2} = 1$$

$$L_{1}$$

$$L_{2}$$

$$\Delta = D_3 = pC_1pL_2 + 1$$

подключаем L_2 , получаем множество схем соответствующих cir(D_n):

 $\Delta = D_4 = pC_1(pC_2pL_1pL_2+pL_2) + pC_2pL_1 + 1 \qquad \Delta = D_{4b} = pC_2(pC_1pL_1pL_2+(pL_1+pL_2)) + pC_1pL_2 + 1$

Согласно четвертому шагу алгоритма получаем множество схем cir(S):

Схема Zb и Zc исключаются из множества схем cir(S) согласно критерию бисекции по одному узлу.

Схемы Za и Zf являются соответственно первой и второй формами Фостера.

СТРУКТУРНЫЙ СИНТЕЗ АRC-ФИЛЬТРА

РЕАЛИЗОВАТЬ СХЕМУ *ARC*-ФИЛЬТРА [Mancini R.-2002]

 $S(p) = 1/(p^3 + 2p^2 + 2p + 1),$ кол-во ARC — min.

Раскладываем знаменатель заданной функции на подвыражения:

 $D_0=1$, $D_1=b_1p+D_0$, $D_2=b_2p^2+D_1$, $D_3=b_3p^3+D_2$.

Выбираем начальную схему в соответствии с условием $b_0 \neq 0, b_1 \neq 0, u$ наращиваем ее до получения множества схем cir(D_n):

$$\begin{array}{c} & g_1 \\ & & \\ \Delta = D_0 \end{array}$$

подключаем С1

$$C_1 = g_1$$

$$\Delta = D_1$$

подключаем g₂

$$\begin{array}{c} g_1 \\ \hline \\ C_1 \\ \hline \\ \Delta = D_1 \end{array} \begin{array}{c} g_2 \\ g_2 \\ g_3 \\ \hline \\ G_1 \\ \hline \\ G_2 \\ G_1 \\ G_2 \\ G_2 \\ G_1 \\ G_2 \\ G_2 \\ G_2 \\ G_1 \\ G_2 \\ G_2$$

подключаем С2

$$\begin{array}{c} & & & \\ & & &$$

подключаем g₃

$$\begin{array}{c} & & & \\ & & & \\ g_1 \end{array} \begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$$

$$\Delta = D_2$$

подключаем С3

$$\begin{array}{c} & & & \\ g_1 & & & \\ g_1 & & & \\ c_1 & & & \\ c_1 & & & \\ c_2 & & \\ c_3 & \\ c_3 & \\ c_4 & \\ c_5 & \\ c_6 & \\ c_7 & \\ c_7 & \\ c_8 &$$

подключаем OУ, получаем множество схем $cir(D_n)$:

Согласно четвертому шагу алгоритма получаем множество схем cir(S):

ПАРАМЕТРИЧЕСКИЙ СИНТЕЗ *АRC*-ФИЛЬТРА

АRС-ФИЛЬТР НИЖНИХ ЧАСТОТ 3-ГО ПОРЯДКА ПО БАТТЕРВОРТУ

ФУНКЦИЯ БАТТЕРВОРТА В НОРМИРОВАННОМ ОТНОСИТЕЛЬНО ЧАСТОТЫ СРЕЗА ВИДЕ

 $S(p) = 1/(p^3 + 2p^2 + 2p + 1)$

СИМВОЛЬНАЯ СХЕМНАЯ ФУНКЦИЯ ФИЛЬТРА

 $S(p) = \frac{1}{R_1 R_2 R_3 C_4 C_5 C_6 p^3 + C_6 [R_3 C_5 (R_1 + R_2) + R_1 C_4 (R_2 + R_3)] p^2 + [R_1 C_4 + C_6 (R_1 + R_2 + R_3)] p + 1},$

СИСТЕМА КОМПОНЕНТНЫХ УРАВНЕНИЙ

 $\omega_{c}^{3}R_{1}R_{2}R_{3}C_{4}C_{5}C_{6} = 1; \quad \omega_{c}^{2}C_{6}[R_{3}C_{5}(R_{1}+R_{2})+R_{1}C_{4}(R_{2}+R_{3})] = 2; \\ \omega_{c}C_{6}(R_{1}+R_{2}+R_{3})_{6} = 2;$

где $\omega_c = 2\pi f_c - циклическая частота среза фильтра, при этом f_c - частота среза.$ Считаем, что R₁ = R₃ = R, R₂ = 2R. Положим, что f_c = 12 кГц и R = 1 кОм.

РАСЧЕТ ЧИСЛЕННЫХ ЗНАЧЕНИЙ ПАРАМЕТРОВ С ПОМОЩЬЮ СИСТЕМЫ MAPLE

Используем onepamop solve, получаем

 $C_4 := 0.1561959410e-7 \Phi; C_5 := 0.2739064545e-7 \Phi; C_6 := 0.2726557435e-8 \Phi.$

АМПЛИТУДНО-ЧАСТОТНАЯ И ФАЗО-ЧАСТОТНАЯ ХАРАКТЕРИСТИКИ АКТИВНОГО ФИЛЬТРА

ПРОГРАММЫ СТРУКТУРНОГО СИНТЕЗА SYMSIN И INTERSYN

SYMSIN – ПРОГРАММА СИНТЕЗА СХЕМ ПО ИХ ССФ

🔢 Графическая оболочка программы по синтезу схемы на основе схемно символьного 💶 💌				
Файл Помощь				
🖄 🗇 😻 і Язык: Русский 💌				
Восстановить				
Определитель Передаточная функция Входная функция Схема				
Введите числитель				
p*p* (L1*c1*(R2*(R1*(-K1)+R3*B1*(K1+1))+R1*R3))				
v]				
Введите знаменатель				
p*p* (c1*(R1*(L1*((R2+R3)))))+				
$p^*(c1^*(R1^*(R2^*(R3^*(K1+1)+R4)+R3^*R4))+L1^*((R1+R2)^*(1)+R3^*(-E)))$				
1* (R2*(R3*(K1+1)+R4)+R3*(R1*(1)+R4*(-B1+1))+R1*R4)				
Тип источника 🗉 🔹 Тип приемника 🔍 💌				
✓ Исключение изоморфных схем Кол-во НУИ: 0				

INTERSYN – ПРОГРАММА СИНТЕЗА СХЕМ ПО ИХ ПОЛИНОМИАЛЬНЫМ СХЕМНЫМ ФУНКЦИЯМ

🔤 Интерактивный синтез		📕 1-1-2-7	1
Файл Справка			1
Добавить		F\/синтеs\results\1-1\1.cir F\/синтes\results\1-1\2.cir	ł
Cerea dag .Ac LoG 5 1000 K1 32 12 4 3 3 g1 12 30 3 c1 13 20 4 g2 2 3 10 3 .END	۲ ۲	F\courres\vesults\1-12X1.cir F\courres\vesults\1-12X2.cir F\courres\vesults\1-12X3.cir <	
Название добавляемого элемента: g3	 Заземлять узел 	F:\cumes\results\1-1-2-7\2.cir	

СХЕМНОЕ РЕШЕНИЕ СИСТЕМЫ УРАВНЕНИЙ

СИСТЕМА УРАВНЕНИЙ СИГНАЛЬНОГО ГРАФА

[Mason S. J.- 1953]

$$\mathbf{1}_{n \times n} A] \underset{n \times 1}{X} = \underset{n \times m}{B} \underset{m \times 1}{X}_{0}$$

неявная форма

общий вид

 $X_{n\times 1} = A X_{n\times n} X_{n\times 1} + B X_{0}_{m\times 1}$

СХЕМНОЕ ОТОБРАЖЕНИЕ МАТРИЦ

Получение алгебраического дополнения Δ_{11} для матрицы второго порядка:

Получение алгебраического дополнения Δ_{12} для матрицы второго порядка

СХЕМНАЯ РЕАЛИЗАЦИЯ СТРУКТУРНОЙ СХЕМЫ УСИЛИТЕЛЯ БЛЭКА С ОБРАТНОЙ СВЯЗЬЮ

[*H. S. Black.*-1928] $S = K/(1 + K\beta)$

 $S = K/(1 + K\beta)$

$$S = G_1 g_1 / (G_1 G_2 + g_1 g_2)$$

РЕАЛИЗАЦИЯ СТРУКТУРНОЙ СХЕМЫ БЛЭКА ТРАНСКОНДУКТИВНЫМИ УСИЛИТЕЛЯМИ

ТРАНСКОНДУКТИВНАЯ РЕАЛИЗАЦИЯ СТРУКТУРНЫХ СХЕМ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ

ТРАНСКОНДУКТИВНАЯ РЕАЛИЗАЦИЯ ЭЛЕМЕНТОВ СИГНАЛЬНОГО ГРАФА И СТРУКТУРНЫХ СХЕМ

Howen	Элементы структурной	Элементы	Реализация
элемента	Схемы	сигнального графа	на транскондуктивных
Jieweiiia	Слемы	em nansnor o r paqua	усилителях
		Дуга с положительным	Неинвертирующий
1	$ - _K \rightarrow$ или $- _K \rightarrow$	параметром	усилитель
1		K	
	Цепь обратной связи	Дуга с отрицательным	Инвертирующий
2		параметром	усилитель
2		$-\beta$	
	Сумматор или узел	Вершина	Резистор
3	🛇 или •	•	+++++++++++++++++++++++++++++++++++++++

ТРАНСКОНДУКТИВНАЯ РЕАЛИЗАЦИЯ УСИЛИТЕЛЯ С КОМБИНИРОВАННОЙ ОБРАТНОЙ СВЯЗЬЮ

[Hollstein C.P.-1967]

ТРАНСКОНДУКТИВНАЯ РЕАЛИЗАЦИЯ КОМБИНАЦИОННОГО УСИЛИТЕЛЯ

[Волгин Л. И. –1967]

ПРОГРАММА ТРАНСКОНДУКТИВНОЙ РЕАЛИЗАЦИИ SCHEMECONVERTER

ТРАНСКОНДУКТИВНАЯ РЕАЛИЗАЦИЯ УСИЛИТЕЛЯ С КОМБИНИРОВАННОЙ ОБРАТНОЙ СВЯЗЬЮ

 $S = (K_1 K_2) / (1 + K_1 K_2 \beta - K_2)$

 $U = \frac{G_{m_1}G_{m_2}G_{m_4}}{G_2G_{m_1}G_{m_2}G_{m_3} - G_1G_2G_{m_2}G_{m_4} + G_{m_4}},$ где $G_{m_1} = K_1, G_{m_2} = K_2, G_{m_3} = \beta,$ $G_{m_4} = g = 1, G_1 = 1, G_2 = 1.$

ТРАНСКОНДУКТИВНАЯ РЕАЛИЗАЦИЯ КОМБИНАЦИОННОГО УСИЛИТЕЛЯ

$$S = \frac{\mu_2(K_1 + \mu_1K_2) + (K_3(\mu_1 - K_1\beta))}{1 + K_2\beta} \qquad U = \frac{G_{m_5}((1 + G_{m_2}G_{m_4})G_{m_7}) + G_{m_3}((G_{m_4} - G_{m_6}G_{m_1})G_{m_7})}{G_{m_2}(G_{m_6}G_{m_7}) + G_{m_7}}$$

rge $G_{m_1} = K_1, G_{m_2} = K_2, G_{m_3} = K_3, G_{m_4} = \mu_1,$
 $G_{m_5} = \mu_2, G_{m_6} = \beta, G_{m_7} = g = 1.$

СХЕМНЫЙ ПОДХОД К ДОПУСКОВОМУ АНАЛИЗУ

ДРОБНАЯ ФОРМА СИМВОЛЬНОЙ СХЕМНОЙ ФУНКЦИИ $S = S_0(1 + \gamma)$ МОДИФИЦИРОВАННАЯ ФОРМУЛА МИДДЛБРУКА
[R.D. Middlebrook.-1989] $S = S_0 \frac{\chi + Z_0^{(\chi)}}{\chi + Z^{(\chi)}},$ $S = S_0' \frac{1 + \chi Z_0'^{(\chi)}}{1 + \chi Z'^{(\chi)}}.$ $Z_0'^{(\chi)} = N^{\chi}/N_{\chi},$ $Z'^{(\chi)} = D^{\chi}/D_{\chi}.$ $Z_0'^{(\chi)} = N^{\chi}/N_{\chi},$ $Z'^{(\chi)} = D^{\chi}/D_{\chi}.$ $N^{\chi} = \Delta (\chi \to \infty),$ $N_{\chi} = \Delta (\chi \to 0),$ $M = \Delta (\chi \to \infty),$ $N_{\chi} = \Delta (\chi \to 0),$ $M = \Delta (\chi \to \infty),$ $N_{\chi} = \Delta (\chi \to 0),$ $M = \Delta (\chi \to \infty),$ $N_{\chi} = \Delta (\chi \to 0),$ $M = \Delta (\chi \to \infty),$ $N_{\chi} = \Delta (\chi \to 0),$ $M = \Delta (\chi \to \infty),$ $N_{\chi} = \Delta (\chi \to 0),$ $M = \Delta (\chi \to \infty),$ $N_{\chi} = \Delta (\chi \to 0),$ $M = \Delta (\chi \to \infty),$ $N_{\chi} = \Delta (\chi \to 0),$ $M = \Delta (\chi \to \infty),$ $N_{\chi} = \Delta (\chi \to 0),$ $M = \Delta (\chi \to \infty),$ $N_{\chi} = \Delta (\chi \to 0),$ $M = \Delta (\chi \to \infty),$ $N_{\chi} = \Delta (\chi \to 0),$ $M = \Delta (\chi \to \infty),$ $N_{\chi} = \Delta (\chi \to 0),$ $M = \Delta (\chi \to \infty),$ $N_{\chi} = \Delta (\chi \to 0),$ $M = \Delta (\chi \to \infty),$ $N_{\chi} = \Delta (\chi \to 0),$ $M = \Delta (\chi \to \infty),$ $N_{\chi} = \Delta (\chi \to 0),$ $M = \Delta (\chi \to \infty),$ $N_{\chi} = \Delta (\chi \to 0),$ $M = \Delta (\chi \to \infty),$ $N_{\chi} = \Delta (\chi \to 0),$ $M = \Delta (\chi \to \infty),$ $N_{\chi} = \Delta (\chi \to 0),$ $M = \Delta (\chi \to \infty),$ $N_{\chi} = \Delta (\chi \to 0),$ $M = \Delta (\chi \to \infty),$ $N_{\chi} = \Delta (\chi \to 0),$ $M = \Delta (\chi \to \infty),$ $N_{\chi} = \Delta (\chi \to 0),$ $M = \Delta (\chi \to \infty),$ $N_{\chi} = \Delta (\chi \to 0),$ $M = \Delta (\chi \to \infty),$ $N_{\chi} = \Delta (\chi \to 0),$ $M = \Delta (\chi \to 0),$ $N_{\chi} = \Delta (\chi \to 0),$ $M = \Delta (\chi \to 0),$ $M = \Delta (\chi \to 0),$ <

МОДЕЛИРОВАНИЕ ДОПУСКОВ С ПОМОЩЬЮ СХЕМНЫХ ЭЛЕМЕНТОВ

ФОРМУЛА ДЛЯ ОПРЕДЕЛЕНИЯ ВЛИЯНИЯ ДОПУСКА *і*-ГО ЭЛЕМЕНТА НА МУЛЬТИПЛИКАТИВНУЮ ПОГРЕШНОСТЬ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ

$$\gamma_{i} = \frac{\delta(\chi_{i})(N^{\delta(\chi_{i})}D_{\delta(\chi_{i})} - N_{\delta(\chi_{i})}D^{\delta(\chi_{i})})}{\delta(\chi_{i}) N_{\delta(\chi_{i})}D^{\delta(\chi_{i})} + N_{\delta(\chi_{i})}D_{\delta(\chi_{i})}}$$

ФОРМУЛА ДЛЯ НАХОЖДЕНИЯ ДОПУСКА і-ГО ЭЛЕМЕНТА

$$\delta(\chi_i) = \frac{\gamma N_{\delta(\chi_i)} D_{\delta(\chi_i)}}{N^{\delta(\chi_i)} D_{\delta(\chi_i)} - N_{\delta(\chi_i)} D^{\delta(\chi_i)}(\gamma_i + 1)}$$

ФОРМУЛА ДЛЯ НАХОЖДЕНИЯ ВЛИЯНИЯ НА ПОГРЕШНОСТЬ ПРЕОБРАЗОВАНИЯ ЦЕПИ ДОПУСКОВ *и* ЧИСЛА ЭЛЕМЕНТОВ:

$$\begin{split} \gamma_{(1,2,...,n)} &= \left[\delta(\chi_{1}) \Big(N_{\delta(\chi_{2,...,n})}^{\delta(\chi_{1})} D_{\delta(\chi_{1,2,...,n})} - N_{\delta(\chi_{1,2,...,n})} D_{\delta(\chi_{2,...,n})}^{\delta(\chi_{1})} \Big) + \ldots + \delta(\chi_{n}) \Big(N_{\delta(\chi_{1,2,...,n-1})}^{\delta(\chi_{n})} D_{\delta(\chi_{1,2,...,n-1})} - N_{\delta(\chi_{1,2,...,n-1})} D_{\delta(\chi_{1,2,...,n-1})} \Big) + \delta(\chi_{1}\chi_{2}) \Big(N_{\delta(\chi_{3,...,n})}^{\delta(\chi_{1,2,...,n})} D_{\delta(\chi_{1,2,...,n})} - N_{\delta(\chi_{1,2,...,n})} D_{\delta(\chi_{1,2,...,n})}^{\delta(\chi_{1,2,...,n-1})} \Big) + \ldots + \\ &+ \delta(\chi_{1}\chi_{2}\ldots\chi_{n}) \Big(N_{\delta(\chi_{1,2,...,n})}^{\delta(\chi_{1,2,...,n})} D_{\delta(\chi_{1,2,...,n})} - N_{\delta(\chi_{1,2,...,n})} D_{\delta(\chi_{1,2,...,n})}^{\delta(\chi_{1,2,...,n})} \Big) \Big] \Big/ \\ & - \Big(N_{\delta(\chi_{1,2,...,n})} \Big) \Big(\delta(\chi_{1}) D_{\delta(\chi_{2,...,n})}^{\delta(\chi_{1,1})} + \ldots + \delta(\chi_{n}) D_{\delta(\chi_{1,2,...,n-1})}^{\delta(\chi_{1,2,...,n})} \Big) \Big) \Big] \\ & + \delta(\chi_{1}\chi_{2}) D_{\delta(\chi_{1,2})}^{\delta(\chi_{1,2})} + \ldots + \delta(\chi_{1}\chi_{2},...,\chi_{n}) D_{\delta(\chi_{1,2,...,n})}^{\delta(\chi_{1,2,...,n})} + D_{\delta(\chi_{1,2,...,n})} \Big) \Big] \Big] \end{split}$$

СХЕМНО-АЛГЕБРАИЧЕСКИЕ ФОРМУЛЫ ДЛЯ НАХОЖДЕНИЯ ДОПУСКОВ

Формула определения допуска на сопротивление:

Формула определения допуска на проводимость:

Формула определения допуска на ИНУН

Формула определения допуска на ИТУН:

Формула определения допуска на ИНУТ:

Формула определения допуска на ИТУТ:

СХЕМНО-АЛГЕБРАИЧЕСКИЕ ФОРМУЛЫ ДЛЯ ОПРЕДЕЛЕНИЯ ПОГРЕШНОСТИ

Формула определения влияния на погрешность допуска на сопротивление:

Формула определения влияния на погрешность допуска на проводимость:

Формула определения влияния на погрешность допуска на ИНУН:

Формула определения влияния на погрешность допуска на ИТУН:

Формула определения влияния на погрешность допуска на ИНУТ:

Формула определения влияния на погрешность допуска на ИТУТ:

ДОПУСКОВЫЙ АНАЛИЗ ТРАНЗИСТОРОНОГО УСИЛИТЕЛЯ

СХЕМА ЗАМЕЩЕНИЯ ТРАЗИСТОРНОГО УСИЛИТЕЛЯ

[Лин Пен-Мин, Чуа Л. О.–1980]

КОЭФИЦИЕНТ ПЕРЕДАЧИ N/D ТРАЗИСТОРНОГО УСИЛИТЕЛЯ

 $N_{\delta(\chi)} = R_6(((R_3 + R_4))(R_2(B_1 + 1)) + (-B_2R_3)(-B_1(R_1 + R_2))) = 101020200000000$

 $D_{\delta(\chi)} = (R_3 + R_4)(-B_1R_1R_2 + R_1(R_2 + R_5) + R_2R_5) +$

 $+((R_3+R_4)R_6)(-B_1R_2+R_2+R_5)+(R_3R_6B_2)(R_2B_1)=1244400000000$

Соответственно, S₀=81,18.

РАСЧЕТ ДОПУСКОВ ЭЛЕМЕНТОВ И ПОГРЕШНОСТЕЙ КОЭФИЦИЕНТА ПЕРЕДАЧИ

		γ	%	$\delta(\chi_i)$)%
Xi	$N^{\delta(\chi)}$ и $D^{\delta(\chi)}$	$\delta(\chi_i) = +10\%$	$\delta(\chi_i) = -10\%$	$\gamma =$ +15%	$\gamma = -15\%$
R ₁ 10 кОм	$N^{\delta(\chi)} = R_6 B_2 R_3 B_1 = 10000000000$ $D^{\chi} = (B_1 R_2 + R_2 + R_5)(R_3 + R_4) = 22200000$	8	-8.3	19	-18
<i>R</i> ₂ 0.1 кОм	$N^{\delta(\chi)} = R_6((R_3 + R_4)(B_1 + 1) + (-B_2R_3)(-B_1)) =$ 10202000000; $D^{\chi} = (R_3 + R_4)(B_1R_1 + R_1 + R_5) +$ $((R_3 + R_4)R_6)(B_1 + 1) + (-R_3R_6B_2)(-B_1) = 12224000000$	-8.9	10.8	-13.4	18
<i>R</i> ₃ 1 кОм	$N^{\chi} = R_6((R_2(B_1+1)) + (-B_2)(-B_1(R_1+R_2))) =$ 101010000000; $D^{\chi} = (B_1R_1R_2 + R_1(R_2+R_5) + R_2R_5) +$ $(R_6)(B_1R_2 + R_2 + R_5) + (-R_6B_2)(-R_2B_1) =$ 1122200000	0.89	-1.1	-403	-64
<i>R</i> 4 1 кОм	$N^{\chi} = R_6 R_2 (B_1 + 1) = 100000000; D^{\chi} = B_1 (R_1 + R_6) R_2 + (R_1 + R_6) (R_2 + R_5) + R_2 R_5 = 122200000$	-0.97	0.99	-133	180
<i>R</i> 5 1кОм	$N^{\chi} = 0; D^{\chi} = (R_1 + R_2 + R_6)((R_3 + R_4)) = 22200000$	-0.17	0.17	-731	989
<i>R</i> 6 1кОм	$N^{\chi} = (R_3 + R_4)(R_2(B_1 + 1)) + (-B_2R_3)(-B_1(R_1 + R_2)) =$ 101020200000; $D^{\chi} = (R_3 + R_4)(B_1R_2 + R_2 + R_5) +$ $(-B_2R_3)(-R_2B_1) = 1022200000$	1.7	-1.9	271	-49.7
В ₁ 121 См	$N^{\chi} = R_6(B_2R_3(R_1+R_2)+R_2(R_3+R_4)) = 101020000000$ $D^{\chi} = R_2(R_6B_2R_3+(R_1+R_6)(R_3+R_4)) = 12200000000$	0.17	-0.21	-117	-90
В ₂ 121 См	$N^{\chi} = \overline{R_6 R_3 B_1 (R_1 + R_2)} = 101000000000000000000000000000000000$	1.8	-2.1	198	-47

КОМПЬЮТЕРНАЯ ПРОГРАММА ДОПУСКОВОГО АНАЛИЗА TOLERALIZE

ПОЛУЧЕНИЕ СИМВОЛЬНЫХ ВЫРАЖЕНИЙ ДОПУСКОВ НА ЭЛЕМЕНТЫ И ПОГРЕШНОСТЕЙ КОЭФФИЦИЕНТА ПРЕОБРАЗОВАНИЯ

🔡 Toleralize		
Файл Редактирование	О программе	
	Список элементов цепи:	Выходные данные:
Открыть файл	Элемент Узел1 Узел2 Узел3 Узел4 Параметр FI1 2 1 3 4 100 FI2 5 0 2 6 100	Z1: R6*Fl2*R3*Fl1
Начать расчет	E1 3 0 1 R1 1 5 10000 R2 0 1 100 R3 0 2 1000	Z2: R2*R6*(R3*(FI1*((FI2+1))+1)+R4*((FI1+1)))
Сохранить в файл	R4 0 6 1000 R5 4 1 1000 R6 0 5 1000 U1 0 5 1000	Z3: R2*(R3*((FI1+1))+R4*((FI1+1)))+R5*(R3+R4)
		Z4: R2*(R6*(R4*((FI1+1))+R3*(FI1*((FI2+1))+1))+R5*(R3+R4))+R6 *R5*(R3+R4)
	Полученные формулы:	
Дробная ССФ 1	S = R6°F12°R3°F11/(R2°(R3°((F11+1))+R4°((F11+1)))+R5°(R3+R4))"((R1+R2°(R6°(R4°((F11+1))+R3°(F11°((F12+1))+1))+R5°(R3+R4))+R6°	A1+A2°A6°(A3°(FI1*((FI2+1))+1)+A4°((FI1+1)))/(A6°FI2°A3°FI1))/ A5°(A3+A4)/(A2°(A3°((FI1+1))+A4°((FI1+1)))+A5°(A3+A4)))
Дробная ССФ 2	$ \begin{bmatrix} S = R2^{x}R6^{x}(R13^{x}(F11^{x}(F12+1))+1)+R4^{x}((F11+1)))/(R2^{x}(R6^{x}(R4^{x}((F11+1)^{x}R6^{x}R12^{x}R3^{x}(F11^{x}(R3^{x}(F13^{x}(F11+1)))))/(1+R13^{x}(F11^{x}(F12+1))+1))+R5^{x}(R3+R4))+R6^{x}R5^{x}(R3+R4))) \\ + 1))+R3^{x}(F11^{x}((F12+1))+1))+R5^{x}(R3+R4))+R6^{x}R5^{x}(R3+R4))) \\ + 1) + R3^{x}(F11^{x}(F12^{x}($))+R3"(FI1"((FI2+1))+1))+R5"(R3+R4))+R6"R5"(R3+R4))"(1+R1 1"R2"(R3"((FI1+1))+R4"((FI1+1)))+R5"(R3+R4)/(R2"(R6"(R4"((FI1
Мультипликативная погрешность	Y = R1*[R6*FI2*R3*FI1*R2*[R6*[R4*([FI1+1])+R3*[FI1*([FI2+1])+1]) ([FI1+1]))*R2*[R3*([FI1+1])+R4*([FI1+1]))+R5*[R3+R4])/[R1*R2*R6 1])]+R5*[R3+R4]+R2*R6*[R3*(FI1*([FI2+1])+1)+R4*([FI1+1])]*R2*[R +R4])	+R5"(R3+R4))+R6"R5"(R3+R4)-R2"R6"(R3"(F11"((F12+1))+1)+R4" "(R3"(F11"((F12+1))+1)+R4"((F11+1)))*R2"(R3"((F11+1))+R4"((F11+ 6"(R4"((F11+1))+R3"(F11"((F12+1))+1))+R5"(R3+R4))+R6"R5"(R3
Допуск	Xi = B1*[R6*FI2*B3*FI1*B2*[R6*[B4*([FI1+1)])+B3*[FI1*([FI2+1)])+1] +B4*([FI1+1)])*B2*[B3*([FI1+1)])+B4*([FI1+1)])+B5*(B3+B4])/[B1*B *"[[FI1+1]])]+B5*[B3+B4]+B2*B6*[B3*[FI1*([FI2+1]]+1]+B4*([FI1+1)]) #B5*[B3+B4]]*B2*B6*[B3*(FI1*([FI2+1])]+1]+B4*([FI1+1)])*B2*(B6*([+R5"(R3+R4))+R6"R5"(R3+R4)-R2"R6"(R3"(F11"((F12+1))+1) 2"R6"(R3"(F11"((F12+1))+1)+R4"((F11+1)))*R2"(R3"((F11+1))+R4 "R2"(R6"(R4"((F11+1))+R3"(F11"((F12+1))+1))+R5"(R3+R4))+R6 R4"((F11+1))+R3"(F11"((F12+1))+1))+R5"(R3+R4))+R6"R5"(R3

РАСЧЕТ ЧИСЛЕННЫХ ЗНАЧЕНИЙ С ПОМОЩЬЮ ПРОГРАММЫ ASP

*** ASP	_ 🗆 🗵
Файл Редактировать Вычисления Помощь	
<u> </u>	
Ввод	
Результат вп=тор;	
B(2=100); E1=1	-
L = 1 - 1 R1 = 10000; R3 = 1000; R4 = 1000; R5 = 1000; R6 = 1000; U1 = 81,1798457087753;	_

ОСНОВНЫЕ РЕЗУЛЬТАТЫ ДИССЕРТАЦИОННОЙ РАБОТЫ

1. Разработаны и реализованы в компьютерных программах прямые методики структурного синтеза линейных электрических цепей по символьной схемной функции и полиномиальной схемной функции.

2. Предложена и реализована в компьютерной программе прямая методика синтеза произвольных структурных схем электрических цепей на основе транскондуктивных усилителей.

3. Разработана и реализована в компьютерной программе методика формирования символьных выражений для определения мультипликативной погрешности функции преобразования и технологического разброса параметров элементов линейных электрических цепей, наиболее удобных по форме представления для многовариантного моделирования, аналитических исследований и точных вычислений.